Abstract

We propose a cohomological modelling schema of quantum state spaces and their connectivity structures in relation to the formulation of global geometric phase phenomena. In the course of this schema, we introduce the notion of Hermitian differential line sheaves or unitary rays and classify their gauge equivalence classes in terms of a global differential invariant given by the de Rham cohomology class of the curvature. Furthermore, we formulate and interpret physically the curvature recognition integrality theorem for unitary rays. Using this recognition theorem, we define the notion of a quantum spectral beam and show that it has an affine space structure with structure group given by the characters of the fundamental group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.