Abstract
We discuss the appearance of a missing geometric quantum phase from the interaction of the permanent electric dipole moment of a neutral particle with the magnetic field produced by a uniform distribution of the magnetic charges inside an infinitely long non-conductor cylinder with an inner radius r a . This geometric quantum phase is associated with the missing magnetic charge per unit length in a region with a cylindrical shape of radius r a and gives rise to an analogue of the He–McKellar–Wilkens geometric quantum phase. By searching for bound state solutions, we show that an Aharonov–Bohm-type effect arises from the influence of the missing geometric quantum phase on the eigenvalues of energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.