Abstract
The chiral de Rham complex is a sheaf of vertex algebras {\Omega}^ch_M on any nonsingular algebraic variety or complex manifold M, which contains the ordinary de Rham complex as the weight zero subspace. We show that when M is a Kummer surface, the algebra of global sections is isomorphic to the N = 4 superconformal vertex algebra with central charge 6. Previously, CP^n was the only manifold where a complete description of the global section algebra was known.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.