Abstract
BackgroundCircadian gene expression is essential for organisms to adjust their physiology and anticipate daily changes in the environment. The molecular mechanisms controlling circadian gene transcription are still under investigation. In particular, how chromatin conformation at different genomic scales and regulatory elements impact rhythmic gene expression has been poorly characterized.ResultsHere we measure changes in the spatial chromatin conformation in mouse liver using genome-wide and promoter-capture Hi-C alongside daily oscillations in gene transcription. We find topologically associating domains harboring circadian genes that switch assignments between the transcriptionally active and inactive compartment at different hours of the day, while their boundaries stably maintain their structure over time. To study chromatin contacts of promoters at high resolution over time, we apply promoter capture Hi-C. We find circadian gene promoters displayed a maximal number of chromatin contacts at the time of their peak transcriptional output. Furthermore, circadian genes, as well as contacted and transcribed regulatory elements, reach maximal expression at the same timepoints. Anchor sites of circadian gene promoter loops are enriched in DNA binding sites for liver nuclear receptors and other transcription factors, some exclusively present in either rhythmic or stable contacts. Finally, by comparing the interaction profiles between core clock and output circadian genes, we show that core clock interactomes are more dynamic compared to output circadian genes.ConclusionOur results identify chromatin conformation dynamics at different scales that parallel oscillatory gene expression and characterize the repertoire of regulatory elements that control circadian gene transcription through rhythmic or stable chromatin configurations.
Highlights
Circadian gene expression is essential for organisms to adjust their physiology and anticipate daily changes in the environment
Genome-wide Hi-C studies at two timepoints of a day-night cycle suggested that circadian targeted by Nr1d1 repressor protein form contacts within their respective topologically associating domains (TADs) that can be dynamic over time [9]
Regulatory elements form dynamic and stable chromatin contacts with circadian gene promoters In order to characterize the full range of promoter interactions, we examined contacts between promoters and non-promoter genomic regions
Summary
Circadian gene expression is essential for organisms to adjust their physiology and anticipate daily changes in the environment. How chromatin conformation at different genomic scales and regulatory elements impact rhythmic gene expression has been poorly characterized. The impact of 3D chromatin configuration dynamics over the course of a day in circadian oscillations of gene expression is still poorly understood. Previous work in cultured cells looking at chromatin contacts established by specific genomic loci showed that the circadian gene Dbp forms inter-chromosomal contacts with ~ 200 kb genome blocks, with fluctuating strength over the course of a day in cultured cells [3]. Genome-wide Hi-C studies at two timepoints of a day-night cycle suggested that circadian targeted by Nr1d1 repressor protein form contacts within their respective topologically associating domains (TADs) that can be dynamic over time [9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.