Abstract

The low resolution of spatial transcriptomics data necessitates additional information for optimal use. We developed scDOT, which combines spatial transcriptomics and single cell RNA sequencing to improve the ability to reconstruct single cell resolved spatial maps and identify senescent cells. scDOT integrates optimal transport and expression deconvolution to learn non-linear couplings between cells and spots and to infer cell placements. Application of scDOT to lung spatial transcriptomics data improves on prior methods and allows the identification of the spatial organization of senescent cells, their neighboring cells and novel genes involved in cell-cell interactions that may be driving senescence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.