Abstract
Abstract We give a description of the $\textrm{GL}_4$ Rapoport–Zink space, including the connected components, irreducible components, intersection behavior of the irreducible components, and Ekedahl–Oort stratification. As an application of this, we also give a description of the supersingular locus of the Shimura variety for the group $\textrm{GU}(2,2)$ over a prime split in the relevant imaginary quadratic field.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have