Abstract

Ginsenoside Rg1, an important and active ingredient of Panax ginseng, has been shown to exert cardioprotective effects in vivo. The present study aimed to test the hypothesis that ginsenoside Rg1 attenuates cardiac dysfunction in a transverse aortic constriction (TAC)-induced left ventricular hypertrophy in vivo via proangiogenic and antifibrotic effects. This study investigated the effects of ginsenoside Rg1 in a rat model of TAC-induced left ventricular hypertrophy. Cardiac function was assessed by echocardiography. The antifibrotic and proangiogenic effects were assessed by histopathology and mRNA expression of procollagen I, III, and vascular endothelial growth factor (VEGF) through quantitative real-time PCR. The expression of phosphorylation of Akt, p38 mitogen-activated protein kinase (MAPK), hypoxia inducible factor-1 (HIF-1), and VEGF proteins were examined by Western blotting. Ginsenoside Rg1 treatment significantly decreased TAC-induced myocardial fibrosis and left ventricular hypertrophy, and preserved cardiac function. Ginsenoside Rg1 administration enhanced angiogenesis by increasing the expression of HIF-1 and VEGF. These cardioprotective effects of ginsenoside Rg1 are partially related to the activation of phospho-Akt and inhibition of p38 MAPK. Ginsenoside Rg1 exhibited protective effect against TAC-induced left ventricular hypertrophy and cardiac dysfunction, which is potentially associated with phospho-Akt activation and p38 MAPK inhibition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.