Abstract

We investigate the problem of designing a minimum-cost flow network interconnecting n sources and a single sink, each with known locations in a normed space and with associated flow demands. The network may contain any finite number of additional unprescribed nodes from the space; these are known as the Steiner points. For concave increasing cost functions, a minimum-cost network of this sort has a tree topology, and hence can be called a Minimum Gilbert Arborescence (MGA). We characterize the local topological structure of Steiner points in MGAs, showing, in particular, that for a wide range of metrics, and for some typical real-world cost functions, the degree of each Steiner point is 3. © 2012 Wiley Periodicals, Inc. NETWORKS, 2013

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.