Abstract
Highly charged ions provide a unique opportunity to test our understanding of atomic properties under extreme conditions: The electric field strength seen by an electron bound to a nucleus at the distance of the Bohr radius ranges from 1010 V/cm in hydrogen to1016 V/cm in hydrogenlike uranium. The theory of quantum electrodynamics (QED) allows for calculation e.g. of binding energies, transition probabilities or magnetic moments. While at low fields QED is tested to very high precision, new, hypothetical nonlinear effects like photon- photon interaction or a violation of Lorentz symmetry may occur in strong fields which then would lead to an extension of the Standard Model. The ultra-high precision determination of the magnetic moment of a bound electron in a highly charged ion provides a unique possibility to probe the validity of the current Standard Model in extreme conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.