Abstract
This paper deals with situations that illustrate how the violation of Lorentz symmetry in the gauge sector may contribute to magnetic moment generation of massive neutral particles with spin- $\frac {1}{2}$ and spin-1. The procedure we adopt here is based on Relativistic Quantum Mechanics. We work out the non-relativistic regime that follows from the wave equation corresponding to a certain particle coupled to an external electromagnetic field and a background that accounts for the Lorentz-symmetry violation, and we thereby read off the magnetic dipole moment operator for the particle under consideration. We keep track of the parameters that govern the non-minimal electromagnetic coupling and the breaking of Lorentz symmetry in the expressions we get for the magnetic moments in the different cases we contemplate. Our claim is that the tiny magnetic dipole moment of truly-elementary neutral particles might signal Lorentz-symmetry violation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.