Abstract

The noise characteristics of randomly networked single walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition with field effect transistor. Geometrical complexity due to the large number of tube-tube junctions in the nanotube network is expected to be one of the key factors for the noise power of 1/f dependence. We investigated low frequency noise as a function of channel length (2-10 microm) and found that increased with longer channel length. Percolational behaviors of nanotube network that differs from ordinary semiconducting and metallic materials can be characterized by a geometrical picture with electrical homo- and hetero-junctions. Fixed nanotube density provides a test conditions to evaluate the contributions of junctions as a noise center. Hooge's empirical law is applied to investigate the low frequency noise characteristics of single walled carbon nanotube random network transistors. The noise power shows the dependence of the transistor channel length. It is understood that nanotube/nanotube junctions act as a noise center. However, the differences induced by channel length in the noise power are observed as not so significant. We conclude that tolerance of low frequency noise is important property for SWNT networks as an electronic device application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.