Abstract

Two approaches for the determination of the primary and secondary geometric isotope effect are compared for the exemplary porphyrinoid system porphycene, which has two intramolecular hydrogen bonds. A three-dimensional Born-Oppenheimer potential energy surface is calculated in terms of the symmetric and antisymmetric N-H stretching as well as a low-frequency hydrogen bond vibrational normal mode coordinate. From the respective ground-state nuclear wavefunction the quantum correction to the classical equilibrium geometry is determined. Further, geometry optimization within a full-dimensional multi-component molecular orbital (MC_MO) type calculation, which treats both the electrons and the hydrogen-bonded protons quantum mechanically, is performed. Both approaches yield geometric isotope effects, that is, upon H/D double substitution the hydrogen bonds are weakened and the respective N-N distances increase. In addition the MC_MO calculation gives a H/D isotope effect on the electronic structure, that is, the electronic wavefunction becomes more localized at the deuterium nucleus as compared with the proton case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.