Abstract
Simple sequence repeats (SSRs) are widely used in cultivar identification, genetic relationship analysis, and quantitative trait locus mapping. Currently, the selection of hybrid progeny plants in molecular marker-assisted breeding mostly relies on SSR markers because of their ease of operation. In Pyrus, a large number of SSR markers have been developed previously. The method to identify polymorphic SSRs quickly is still lacking in cultivated as well as wild pear species. We present a large number of polymorphic SSRs identified using a quick in silico approach applied across 30 cultivated and wild accessions from Pyrus species. A total of 49,147 SSR loci were identified in Pyrus, and their genotypes were evaluated by whole-genome resequencing data of 30 Pyrus accessions. The results show that most SSR loci were dinucleotide repeat motifs located in intergenic regions. The genotypes of all SSR loci were revealed in all accessions. A total of 23,209 loci were detected, with more than one genotype in all Pyrus accessions. We selected 702 highly polymorphic SSR loci to characterize the pear accessions with an average polymorphism information content value of 0.67, suggesting that these SSR loci were highly polymorphic. The genetic relationship of Pyrus species in the neighbor-joining (NJ) tree and population structure showed a clear division between the oriental and occidental accessions. The population structure split all oriental pears into two groups: cultivars and wild accessions. These new findings of the polymorphic SSR loci in this study are valuable for selecting appropriate markers in molecular marker-assisted breeding in Pyrus.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have