Abstract

BackgroundSynthetic biology allows the development of new biochemical pathways for the production of chemicals from renewable sources. One major challenge is the identification of suitable microorganisms to hold these pathways with sufficient robustness and high yield. In this work we analyzed the genome of the propionic acid producer Actinobacteria Propionibacterium acidipropionici (ATCC 4875).ResultsThe assembled P. acidipropionici genome has 3,656,170 base pairs (bp) with 68.8% G + C content and a low-copy plasmid of 6,868 bp. We identified 3,336 protein coding genes, approximately 1000 more than P. freudenreichii and P. acnes, with an increase in the number of genes putatively involved in maintenance of genome integrity, as well as the presence of an invertase and genes putatively involved in carbon catabolite repression. In addition, we made an experimental confirmation of the ability of P. acidipropionici to fix CO2, but no phosphoenolpyruvate carboxylase coding gene was found in the genome. Instead, we identified the pyruvate carboxylase gene and confirmed the presence of the corresponding enzyme in proteome analysis as a potential candidate for this activity. Similarly, the phosphate acetyltransferase and acetate kinase genes, which are considered responsible for acetate formation, were not present in the genome. In P. acidipropionici, a similar function seems to be performed by an ADP forming acetate-CoA ligase gene and its corresponding enzyme was confirmed in the proteome analysis.ConclusionsOur data shows that P. acidipropionici has several of the desired features that are required to become a platform for the production of chemical commodities: multiple pathways for efficient feedstock utilization, ability to fix CO2, robustness, and efficient production of propionic acid, a potential precursor for valuable 3-carbon compounds.

Highlights

  • Synthetic biology allows the development of new biochemical pathways for the production of chemicals from renewable sources

  • Preliminary proteomic analysis of P. acidipropionici growing on different carbon sources allowed the identification of 649 (19.5%) of the coding sequences (CDSs)

  • We identified one new CDS [Genbank:AB007909.1; 1292–1552] in the plasmid coding for an 87 amino acid peptide similar to an InterPro family of proteins putatively involved in plasmid stabilization [InterPro: IPR007712]

Read more

Summary

Introduction

Synthetic biology allows the development of new biochemical pathways for the production of chemicals from renewable sources. A major challenge of white (industrial) biotechnology is the production with high yield of reduced carbon chains able to replace fossil hydrocarbons. Two examples of well-established processes able to produce high volumes of useful carbon chains are ethanol fermentation by yeast and lactate fermentation by lactic acid bacteria. Lactic acid is used mainly in the food industry, but is currently employed as the building block for the biodegradable plastic polylactic acid (PLA) [1]. Though economically viable, both processes have weaknesses. Carbon recovery in lactate fermentation is much higher (100% w/w from glucose); lactic acid has a high oxygen content, which makes its conversion into other industrially relevant 3-carbon molecules difficult. It is important to search for new fermenting organisms capable of producing reduced carbon chains with higher efficiency in carbon recovery

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.