Abstract

The Steller sea lion is the largest member of the Otariidae family and is found in the coastal waters of the northern Pacific Rim. Here, we present the Steller sea lion genome, determined through DNA sequencing approaches that utilized microfluidic partitioning library construction, as well as nanopore technologies. These methods constructed a highly contiguous assembly with a scaffold N50 length of over 14 megabases, a contig N50 length of over 242 kilobases and a total length of 2.404 gigabases. As a measure of completeness, 95.1% of 4104 highly conserved mammalian genes were found to be complete within the assembly. Further annotation identified 19,668 protein coding genes. The assembled genome sequence and underlying sequence data can be found at the National Center for Biotechnology Information (NCBI) under the BioProject accession number PRJNA475770.

Highlights

  • Steller sea lions (Eumetopias jubatus) inhabit the coastal waters of the subarctic and are mainly found in the northern Pacific Rim, stretching from central California to northern Japan [1]

  • We present the genomic sequence and gene annotation resources for the Steller sea lion. This assembly will assist in the conservation process of Steller sea lions, as well as contribute to the comparative genomic analysis of marine mammals, aiding in our understanding of how marine animals may have adapted in their transition back to the water

  • The final assembled Eumetopias jubatus genome consisted of 2,404,049,571 sequenced bases with a scaffold N50 of 14.02 Mbp, representing a good overview of the 18 chromosome pairs in the Steller sea lion [18]

Read more

Summary

Introduction

Steller sea lions (Eumetopias jubatus) inhabit the coastal waters of the subarctic and are mainly found in the northern Pacific Rim, stretching from central California to northern Japan [1]. We present the genomic sequence and gene annotation resources for the Steller sea lion. This assembly will assist in the conservation process of Steller sea lions, as well as contribute to the comparative genomic analysis of marine mammals, aiding in our understanding of how marine animals may have adapted in their transition back to the water.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.