Abstract

In COPD, chronic inflammation, and exposure to irritants, such as cigarette smoke, leads to the thickening of bronchial walls. This results from increased deposition of collagen and other extracellular matrix components, contributing to the narrowing of airways. Nevertheless, it is widely recognized that COPD is an inflammatory disorder marked by partially reversible airflow limitation wherein genetic factors interact with the environment. In recent years, numerous investigations have substantiated the correlation between gene polymorphisms and COPD. SUMF1 has been implicated in diverse cellular processes, including lysosomal function and extracellular matrix maintenance, both of which play pivotal roles in respiratory health. The genetic variations in SUMF1 could lead to an imbalanced sulfation in the extracellular matrix of lung tissue, potentially playing a role in the onset of COPD. Recent studies have uncovered a potential link between dysregulation of SUMF1 and COPD progression, shedding light on its involvement in the abnormal sulfatase activity observed in COPD patients. Through a comprehensive review of current literature and experimental findings, this article aims to contribute to the growing body of knowledge surrounding the genetic intricacies concerning sulfation, of airway remodeling and possible pharmacological applications in COPD and asthma management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.