Abstract

Ganglioglioma is the most common epilepsy-associated neoplasm that accounts for approximately 2% of all primary brain tumors. While a subset of gangliogliomas are known to harbor the activating p.V600E mutation in the BRAF oncogene, the genetic alterations responsible for the remainder are largely unknown, as is the spectrum of any additional cooperating gene mutations or copy number alterations. We performed targeted next-generation sequencing that provides comprehensive assessment of mutations, gene fusions, and copy number alterations on a cohort of 40 gangliogliomas. Thirty-six harbored mutations predicted to activate the MAP kinase signaling pathway, including 18 with BRAF p.V600E mutation, 5 with variant BRAF mutation (including 4 cases with novel in-frame insertions at p.R506 in the β3-αC loop of the kinase domain), 4 with BRAF fusion, 2 with KRAS mutation, 1 with RAF1 fusion, 1 with biallelic NF1 mutation, and 5 with FGFR1/2 alterations. Three gangliogliomas with BRAF p.V600E mutation had concurrent CDKN2A homozygous deletion and one additionally harbored a subclonal mutation in PTEN. Otherwise, no additional pathogenic mutations, fusions, amplifications, or deletions were identified in any of the other tumors. Amongst the 4 gangliogliomas without canonical MAP kinase pathway alterations identified, one epilepsy-associated tumor in the temporal lobe of a young child was found to harbor a novel ABL2-GAB2 gene fusion. The underlying genetic alterations did not show significant association with patient age or disease progression/recurrence in this cohort. Together, this study highlights that ganglioglioma is characterized by genetic alterations that activate the MAP kinase pathway, with only a small subset of cases that harbor additional pathogenic alterations such as CDKN2A deletion.

Highlights

  • Ganglioglioma is a well-differentiated and typically slow-growing glioneuronal neoplasm composed of dysplastic ganglion cells in combination with neoplastic glial cells [2]

  • The activating p.V600E hotspot mutation in the BRAF oncogene has been identified in a subset of gangliogliomas, ranging from approximately 10–60% depending on the study and anatomic site, with highest frequencies reported in cortical tumors and lower frequency reported in spinal cord tumors [6, 7, 9, 11,12,13, 16, 21, 27, 30, 31, 36–38]

  • This study reveals that ganglioglioma is genetically defined by alterations that activate the MAP kinase signaling pathway in the vast majority of cases, either via BRAF p.V600E mutation or a spectrum of other genetic alterations including alternative BRAF mutations or fusions, RAF1 fusion, KRAS mutation, NF1 mutation, or FGFR mutations or fusions

Read more

Summary

Introduction

Ganglioglioma is a well-differentiated and typically slow-growing glioneuronal neoplasm composed of dysplastic ganglion cells in combination with neoplastic glial cells [2]. They often arise in the temporal lobe of children and young adults in association with seizures. They can occur at any age and throughout the neuraxis including the cerebellum, brainstem, and spinal cord. BRAF p.V600E mutation is not specific to ganglioglioma and has been described in a wide spectrum of neuroepithelial tumors including pilocytic astrocytoma, dysembryoplastic neuroepithelial tumor (DNET), pediatric

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.