Abstract

Molecular profiling of human cancer is complicated by both stromal contamination and cellular heterogeneity within samples from tumor biopsies. In this study, we developed a tissue-processing protocol using mechanical dissociation and flow cytometric sorting that resulted in the respective enrichment of stromal and tumor fractions from frozen pancreatic adenocarcinoma samples. Molecular profiling of DNA from the sorted populations using high-density single nucleotide polymorphism arrays revealed widespread chromosomal loss of heterozygosity in tumor fractions but not in either the stromal fraction or unsorted tissue specimens from the same sample. Similarly, a combination of KRAS mutations and chromosomal copy number changes at key pancreatic cancer loci, such as CDK2NA and TP53, was detected in a substantial proportion of the tumor fractions but not in matched stromal fractions from the same sample. This approach to tissue processing could greatly expand the amount of archived tissue that is available for molecular profiling of human cancer and enable a more accurate diagnosis of genetic alterations in patient samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.