Abstract

Ecological divergence is a fundamental source of phenotypic diversity between closely related species, yet the genetic architecture of most ecologically relevant traits is poorly understood. Differences in elevation can impose substantial divergent selection on both complex, correlated suites of traits (such as life-history), as well as novel adaptations. We use the Mimulus guttatus species complex to assess if the divergence in elevation is accompanied by trait divergence in a group of closely related perennials and determine the genetic architecture of this divergence. We find that divergence in elevation is associated with differences in life-history, as well as a unique trait, the production of rhizomes. The divergence between two perennials is largely explained by few mid-to-large effect quantitative trait loci (QTLs). However, the presence of QTLs with correlated, but opposing effects on multiple traits leads to some hybrids with transgressive trait combinations. Lastly, we find that the genetic architecture of the ability to produce rhizomes changes through development, wherein most hybrids produce rhizomes, but only later in development. Our results suggest that elevational differences may shape life-history divergence between perennials, but aspects of the genetic architecture of divergence may have implications for hybrid fitness in nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call