Abstract
In Drosophila melanogster females the segregation of nonexchange chromosomes is ensured by the distributive segregation system. The mutation noda specifically impairs distributive disjunction and induces nonexchange chromosomes to undergo nondisjunction, as well as both meiotic and mitotic chromosome loss. We report here the isolation of seven recessive X-linked mutations that are allelic to noda. As homozygotes, all of these mutations exhibit a phenotype that is similar to that exhibited by noda homozygotes. We have also used these mutations to demonstrate that nod mutations induce nonexchange chromosomes to nondisjoin at meiosis II. Our data demonstrate that the effects of noda on meiotic chromosome behavior are a general property of mutations at the nod locus. Several of these mutations exhibit identical phenotypes as homozygotes and as heterozygotes with a deficiency for the nod locus; these likely correspond to complete loss-of-function or null alleles. None of these mutations causes lethality, decreases the frequency of exchange, or impairs the disjunction of exchange chromosomes in females. Thus, either the nod locus defines a function that is specific to distributive segregation or exchange can fully compensate for the absence of the nod+ function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.