Abstract
A topological gyrogroup is a gyrogroup endowed with a topology such that the binary operation is jointly continuous and the inverse mapping is also continuous. It is shown that a strongly topological gyrogroup is a q-space if and only if it is an M-space. Then a characterization about weakly feathered strongly topological gyrogroups is given, that is, a strongly topological gyrogroup G is weakly feathered if and only if it contains a compact strong subgyrogroup H such that the quotient space G/H is submetrizable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.