Abstract

The optimal value of the smoothing parameter of the Kernel estimator can be obtained by the well known Plug-in algorithm. The optimality is realised in the sense of Mean Integrated Square Error (MISE). In this paper, we propose to generalise this algorithm to the case of the difficult problem of the estimation of a distribution which has a bounded support. The proposed algorithm consists in searching the optimal smoothing parameter by iterations from the expression of MISE of the kernel-diffeomorphism estimator. By some simulations applied to some distribution having a support bounded and semi bounded, we show that the support of the pdf estimator respects the one of the theoretical distribution. We also prove that the proposed method minimizes the Gibbs phenomenon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.