Abstract

We study noncommutative principal bundles (Hopf–Galois extensions) in the context of coquasitriangular Hopf algebras and their monoidal category of comodule algebras. When the total space is quasi-commutative, and thus the base space subalgebra is central, we define the gauge group as the group of vertical automorphisms or equivalently as the group of equivariant algebra maps.We study Drinfeld twist (2-cocycle) deformations of Hopf–Galois extensions and show that the gauge group of the twisted extension is isomorphic to the gauge group of the initial extension. In particular, noncommutative principal bundles arising via twist deformation of commutative principal bundles have classical gauge group. We illustrate the theory with a few examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.