Abstract
We outline how Drinfeld twist deformation techniques can be applied to the deformation quantization of principal bundles into noncommutative principal bundles and, more in general, to the deformation of Hopf–Galois extensions. First, we twist deform the structure group in a quantum group, and this leads to a deformation of the fibers of the principal bundle. Next, we twist deform a subgroup of the group of automorphisms of the principal bundle, and this leads to a noncommutative base space. Considering both deformations, we obtain noncommutative principal bundles with noncommutative fiber and base space as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.