Abstract
AbstractThe Gas Field Ion Source, GFIS, promises a 109A/(cm2 str) brightness, small beam sizes, and inert gas ion species. If this performance could be demonstrated on a commercial system, the GFIS might replace the liquid metal ion source as the standard source for FIB applications. Recent work at the Max-Planck-Institut für Kernphysik (MPI-K) in Heidelberg, Germany has shown that a GFIS with a ‘Super Tipped’ emitter can be reliably fabricated and can be run with stable helium beam current for more than 200 hours. However, this GFIS source must operate in a bakable UHV chamber, at cryogenic temperatures, and at high voltages with low vibration. A GFIS is now being integrated with high resolution ion optics and a vacuum chamber designed for studying GFIS image quality and ion induced chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.