Abstract
The two variable(G'/G,1/G)-expansion method is employed to construct exact traveling wave solutions with parameters of two higher order nonlinear evolution equations, namely, the nonlinear Klein-Gordon equations and the nonlinear Pochhammer-Chree equations. When the parameters are replaced by special values, the well-known solitary wave solutions of these equations are rediscovered from the traveling waves. This method can be thought of as the generalization of well-known original(G'/G)-expansion method proposed by Wang et al. It is shown that the two variable(G'/G,1/G)-expansion method provides a more powerful mathematical tool for solving many other nonlinear PDEs in mathematical physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.