Abstract
<p>Climate models project an intensification of the wintertime North Atlantic storm track, over its downstream region, by the end of this century. Previous studies have suggested that ocean-atmosphere coupling plays a key role in this intensification, but the precise role of the different components of the coupling has not been explored and quantified. Here, using a hierarchy of ocean coupling experiments, we isolate and quantify the respective roles of thermodynamic (changes in surface heat fluxes) and dynamic (changes in ocean heat flux convergence) ocean coupling in the projected intensification of North Atlantic storm track. We show that dynamic coupling accounts for nearly all of the future strengthening of the storm track as it overcomes the much smaller effect of surface heat flux changes to weaken the storm track. We further show that by reducing the Arctic amplification in the North Atlantic, ocean heat flux convergence increases the meridional temperature gradient aloft, causing a larger eddy growth rate, and resulting in the strengthening of the North Atlantic storm track. Our results stress the importance of better monitoring and investigating the changes in ocean heat transport, for improving climate change adaptation strategies.</p>
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have