Abstract
VAV1-MYO1F is a recently identified gain-of-function fusion protein of the proto-oncogene Vav guanine nucleotide exchange factor 1 (VAV1) that is recurrently detected in T-cell non-Hodgkin's lymphoma (T-NHL) patients. However, the pathophysiological functions of VAV1-MYO1F in lymphomagenesis are insufficiently defined. Therefore, we generated transgenic mouse models to conditionally express VAV1-MYO1F in T-cells in vivo. We demonstrate that VAV1-MYO1F triggers cell autonomous activation of T-cell signaling with an activation of the ERK, JNK, and AKT pathways. VAV1-MYO1F expression induces a T-cell activation phenotype with high surface expression of CD25, ICOS, CD44, PD-1, and decreased CD62L as well as aberrant T-cell differentiation, proliferation, and neoplastic transformation. Consequently, the VAV1-MYO1F expressing T-cells induce a malignant T lymphoproliferative disease with 100% penetrance in vivo that mimics key aspects of human peripheral T-cell lymphoma. These results demonstrate that the human T-cell oncogene VAV1-MYO1F is sufficient to trigger oncogenic T-cell signaling and neoplastic transformation, and moreover, it provides a new clinically relevant mouse model to explore the pathogenesis of and treatment concepts for human T-cell lymphoma.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have