Abstract

Fusion–Fission Optimization (FuFiO) is proposed as a new metaheuristic algorithm that simulates the tendency of nuclei to increase their binding energy and achieve higher levels of stability. In this algorithm, nuclei are divided into two groups, namely stable and unstable. Each nucleus can interact with other nuclei using three different types of nuclear reactions, including fusion, fission, and β-decay. These reactions establish the stabilization process of unstable nuclei through which they gradually turn into stable nuclei. A set of 120 mathematical benchmark test functions are selected to evaluate the performance of the proposed algorithm. The results of the FuFiO algorithm and its related non-parametric statistical tests are compared with those of other metaheuristic algorithms to make a valid judgment. Furthermore, as some highly-complicated problems, the test functions of two recent Competitions on Evolutionary Computation, namely CEC-2017 and CEC-2019, are solved and analyzed. The obtained results show that the FuFiO algorithm is superior to the other metaheuristic algorithms in most of the examined cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.