Abstract

Here we report the isolation and characterization of a novel transcription factor from the cephalosporin C-producing fungus Acremonium chrysogenum. We have identified a protein binding site in the promoter of the beta-lactam biosynthesis gene pcbC, located 418 nucleotides upstream of the translational start. Using the yeast one-hybrid system, we succeeded in isolating a cDNA clone encoding a polypeptide, which binds specifically to the pcbC promoter. The polypeptid shows significant sequence homology to human transcription factors of the regulatory factor X (RFX) family and was designated CPCR1. A high degree of CPCR1 binding specificity was observed in in vivo and in vitro experiments using mutated versions of the DNA binding site. The A. chrysogenum RFX protein CPCR1 recognizes an imperfect palindrome, which resembles binding sites of human RFX transcription factors. One- and two-hybrid experiments with truncated versions of CPCR1 showed that the protein forms a DNA binding homodimer. Nondenaturing electrophoresis revealed that the CPCR1 protein exists in vitro solely in a multimeric, probably dimeric, state. Finally, we isolated a homologue of the cpcR1 gene from the penicillin-producing fungus Penicillium chrysogenum and determined about 60% identical amino acid residues in the DNA binding domain of both fungal RFX proteins, which show an overall amino acid sequence identity of 29%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.