Abstract

Malpha2-3 is a monoclonal antibody that partially mimics the nicotinic acetylcholine receptor (AChR). Its three-dimensional structure has been previously predicted by molecular modeling, suggesting that 29 complementarity determining region (CDR) residues and 2 framework residues are exposed to solvent. To identify the antibody residues that bind to the antigen, i.e. snake toxin that binds specifically to AChR, we (i) produced the scFv form of Malpha2-3 fused to alkaline phosphatase, in the periplasmic space of Escherichia coli; (ii) submitted approximately 75% of exposed residues of the fused scFv to individual or combined mutations, and (iii) identified the residues whose mutations affect scFv binding to the toxin, using a sensitive enzyme-linked immunosorbent assay. 11 critical residues were identified, including 8 heavy chain residues, 2 framework residues, and 1 light chain residue. They cover a surface of approximately 800 A2, with a subset of most critical residues (VHD31, VHY32, and VHG101) and several aromatic residues. This functional architecture not only constitutes a plausible complementary binding surface for the snake toxin but also offers a structural basis to ultimately understand the capacity of the antibody to partially mimic AChR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.