Abstract

A B72.3 Fab/sTn(2) complex was modeled from the known structure of B72.3 Fab and the dimeric Tn-serine cluster (sTn(2)). In the complex model, the side chains of 15 heavy- and light-chain complementarity-determining region (CDR) residues and the main chains of two light-chain CDR residues contact the sTn(2) epitope. Among 15 CDR residues which contact sTn(2) in the model, two heavy-chain residues (Ser95 and Tyr97) and light-chain CDR residue (Tyr96) have been confirmed in a previous study. To test the accuracy of the computational model, further site-directed mutagenesis was performed by alanine scanning on the remaining 12 residues that are predicted in the model to have side-chain interactions with sTn(2). Of these 12 mutants, eight that are all from the heavy-chain (His32Ala, Ala33Leu, Tyr50Ala, Ser52Ala, Asn52Ala, Asp56Ala, Lys58Ala and Tyr96Ala) had significantly reduced sTn(2) affinities, and four consisting of three light-chain mutations (Asn32Ala, Trp92Ala and Thr94Ala) and one heavy-chain mutation (His35Ala) retained wild-type sTn(2) affinity. On the whole, this evidence suggests that the complex model, although not perfect, is correct in many of its features. In a more general vein, these results lend credibility to the computational modeling approach for the study of the molecular basis of antigen-antibody complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.