Abstract

Within potential theory of Poisson-Laplace equation the boundary value problem of physical geodesy is classified asfree andnonlinear. For solving this typical nonlinear boundary value problem four different types of nonlinear integral equations corresponding to singular density distributions within single and double layer are presented. The characteristic problem of free boundaries, theproblem of free surface integrals, is exactly solved bymetric continuation. Even in thelinear approximation of fundamental relations of physical geodesy the basic integral equations becomenonlinear because of the special features of free surface integrals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.