Abstract
The fracture mechanisms of SiCp/AZ91 composites were investigated by scanning electron microscopy (SEM). For the as-cast composites, the decohesion at SiCp/matrix interface is the main fracture mechanism because of the high stress concentration resulting from the segregation of particles in grain boundaries formed during solidification process. But for the extruded composites, the main fracture mechanism is the particle crack or ductile rupture of the matrix between the particles. So the fracture mechanism of SiCp/AZ91 composites is altered by extrusion because the segregation of particles and defects in the grain boundaries are largely eliminated by extrusion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.