Abstract

Large-scale hydraulic fracturing is the critical technology for effective shale oil production. However, the imbibition flow mechanisms of fracturing fluid in shale micropores and the influence of shale microstructure and physical properties are still indistinct, which makes the optimization goal of fracturing flowback unclear and restricts the enhancement of shale oil recovery. Therefore, based on SEM and XRD experiments, it is analyzed that shale has the characteristics of multiple pores, which are divided into organic pores, brittle mineral pores, and clay pores. Nonetheless, how the tube cross-section controls the interface displacement is not well discussed in the available literature, especially in irregular triangles, rectangles and other non-circular shapes. This paper studies the influence of cross-section shapes on the capillary force by considering the corner flow of the wetting phase, and it analyzes the imbibition dynamics of different types of pores. Using the shale multi-pores physical model and fractal theory, the shale semi-analytical solution models of SI and FI are established. Theoretical analysis of the water imbibition mechanisms shows that the key factors controlling SI and FI volume include imbibition time, fluid properties, pore cross-section shapes, tortuosity, and forced pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.