Abstract

In the present paper, we construct the traveling wave solutions involving parameters for some nonlinear evolution equations in the mathematical physics via the (2+1)-dimensional Painleve integrable Burgers equations, the (2+1)-dimensional Nizhnik-Novikov-Vesselov equations, the (2+1)-dimensional Boiti-Leon-Pempinelli equations and the (2+1)-dimensional dispersive long wave equations by using a new approach, namely the ( \(\frac{G'}{G})\) -expansion method, where G=G(ξ) satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the solitary waves are derived from the traveling waves. The traveling wave solutions are expressed by hyperbolic, trigonometric and rational functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.