Abstract

In the present paper, we construct the traveling wave solutions involving parameters of some nonlinear PDEs in mathematical physics via the nonlinear SchrOdinger (NLS) equation and the regularized long-wave (RLW) equation by using a simple method which is called the (G’/G) -expansion method, where G=G(ζ) satisfies the second order linear ordinary differential equation. When the parameters are taken special values, the solitary waves are derived from the traveling waves. The traveling wave solutions are expressed by hyperbolic, trigonometric and rational functions. This method is more powerful and will be used in further works to establish more entirely new solutions for other kinds of nonlinear PDEs arising in mathematical physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.