Abstract

The reactive ion beam mixing (IBM) of V/Al interfaces by low-energy N2+ ions at room temperature leads to the formation of V–Al–N ternary nitride thin films. The kinetics, growth mechanisms, composition and electronic structure of those films have been studied using X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, Factor Analysis and Monte Carlo TRIDYN simulations. The comparison of experimental results with those obtained from TRIDYN simulations suggests that the chemical reaction with the nitrogen partial pressure and processes driven by residual defects are the rate-controlling mechanisms during the reactive IBM of V/Al interfaces. The kinetics of mixing is characterized by two stages. During the first stage (≤4×1016 ions/cm2), the formation of vanadium nitride is observed. In the second stage, vanadium nitride is transformed into a V–Al–N ternary nitride due to Al incorporation in the near surface region. Moreover, the V/Al ratio can be varied in a broad range, whereas the nitrogen concentration slightly decreases with increasing the aluminium content of the film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.