Abstract

Type theories are fundamental for underpinning data object modeling and system architectural design in computing and software engineering. Abstract Data Types (ADTs) are a set of highly generic and rigorously modeled data structures in type theory. ADTs also play a key role in Object-Oriented (OO) technologies for software system design and implementation. This paper presents a formal modeling methodology for ADTs using the Real-Time Process Algebra (RTPA), which allows both architectural and behavioral models of ADTs and complex data objects. Formal architectures, static behaviors, and dynamic behaviors of a set of ADTs are comparatively studied. The architectural models of the ADTs are created using RTPA architectural modeling methodologies known as the Unified Data Models (UDMs). The static behaviors of the ADTs are specified and refined by a set of Unified Process Models (UPMs) of RTPA. The dynamic behaviors of the ADTs are modeled by process dispatching technologies of RTPA. This work has been applied in a number of real-time and non-real-time system designs such as a Real-Time Operating System (RTOS+), a Cognitive Learning Engine (CLE), and the automatic code generator based on RTPA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call