Abstract

A real-time operating system (RTOS) provides a platform for the design and implementation of a wide range of applications in real-time systems, embedded systems, and mission-critical systems. This paper presents a formal design model for a general RTOS known as RTOS+ that enables a specific target RTOS to be rigorously and efficiently derived in real-world applications. The methodology of a denotational mathematics, Real-Time Process Algebra (RTPA), is described for formally modeling and refining architectures, static behaviors, and dynamic behaviors of RTOS+. The conceptual model of the RTOS+ system is introduced as the initial requirements for the system. The architectural model of RTOS+ is created using RTPA architectural modeling methodologies and refined by a set of Unified Data Models (UDMs). The static behaviors of RTOS+ are specified and refined by a set of Unified Process Models (UPMs). The dynamic behaviors of the RTOS+ system are specified and refined by the real-time process scheduler and system dispatcher. This work is presented in two papers; the conceptual and architectural models of RTOS+ is described in this paper, while the static and dynamic behavioral models of RTOS+ will be elaborated in a forthcoming paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call