Abstract

A formalism in which timing properties of digital hardware may be specified, derived, and formally verified is introduced as a rigorous theory for hardware timing. A rigorous modeling framework has been used to create a family of related verification techniques rather than a single timing analysis tool. This framework is based on a model of interacting finite state machines called CIRCAL, a formalism developed for the purpose of describing and validating complex concurrent systems. In this approach to hardware timing analysis, the presence of a composition operator is all-pervasive. It provides a single, uniform mechanism for describing the behavior of interacting hardware modules and for establishing and describing the timing properties of such modules.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.