Abstract

In this paper, the form error reduction method is presented in side wall machining. Cutting forces and tool deflection are calculated considering surface profile generated by the previous cutting such as roughing and semi-finishing. Using the form error prediction from tool deflection curve, the effects of tool teeth numbers, tool geometry and cutting conditions on the form error are analyzed. The characteristics and the differences of generated surface shape in up and down milling are also discussed and over-cut free condition in up milling is presented. The form error reduction method through successive down and up milling has been suggested. The effectiveness and usefulness of the suggested method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that the form error prediction from tool deflection in side wall machining can be used in proper cutting condition selection and real time surface error simulation for CAD/CAM systems. This research also contributes to cutting process optimization for the improvement of form accuracy in die and mold manufacture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call