Abstract
Robotic assisted milling is a process where a robot supports a workpiece while a machine tool cuts the workpiece. It can be used to suppress vibrations and minimize form errors in thin wall workpieces. In this paper, form error on a workpiece is simulated using a static force model, a frequency domain model and a hybrid model while a robot supports the workpiece from the other side. Machining results show that assistance of the robot has a considerable effect of the magnitude of form errors. Hence, support force should be carefully selected by simulation before machining. Finally, simulation results show that hybrid model gives the best fit among those three models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.