Abstract

The style and evolution of volcanic eruptions are dictated by the fluid mechanics governing magma ascent. Decompression during ascent causes dissolved volatile species, such as water and carbon dioxide, to exsolve from the melt to form bubbles, thus providing a driving force for the eruption. Ascent is influenced not only by the nucleation and growth of gas bubbles, but also magma rheology and brittle deformation (fragmentation). In fact, all processes and magma properties within the conduit interact and are coupled. Ultimately, it is the ability of gas trapped within growing bubbles to expand or to be lost by permeable gas flow, which determines whether ascending magmas can erupt nonexplosively. We review and integrate models of the primary conduit processes to show when each process or property dominates and how these interact within a conduit. In particular, we illustrate how and why ascent rate may control eruptive behavior: slowly ascending magmas erupt effusively and rapidly ascending magmas erupt explosively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call