Abstract

The functional characterization of hispidulin (4',5,7-trihydroxy-6-methoxyflavone), a potent benzodiazepine (BZD) receptor ligand, was initiated to determine its potential as a modulator of central nervous system activity. After chemical synthesis, hispidulin was investigated at recombinant GABA(A)/BZD receptors expressed by Xenopus laevis oocytes. Concentrations of 50 nm and higher stimulated the GABA-induced chloride currents at tested receptor subtypes (alpha(1-3,5,6)beta(2)gamma(2)S) indicating positive allosteric properties. Maximal stimulation at alpha(1)beta(2)gamma(2)S was observed with 10 microm hispidulin. In contrast to diazepam, hispidulin modulated the alpha(6)beta(2)gamma(2)S-GABA(A) receptor subtype. When fed to seizure-prone Mongolian gerbils (Meriones unguiculatus) in a model of epilepsy, hispidulin (10 mg kg(-1) body weight (BW) per day) and diazepam (2 mg kg(-1) BW per day) markedly reduced the number of animals suffering from seizures after 7 days of treatment (30 and 25% of animals in the respective treatment groups, vs 80% in the vehicle group). Permeability across the blood-brain barrier for the chemically synthesized, (14)C-labelled hispidulin was confirmed by a rat in situ perfusion model. With an uptake rate (K(in)) of 1.14 ml min(-1) g(-1), measurements approached the values obtained with highly penetrating compounds such as diazepam. Experiments with Caco-2 cells predict that orally administered hispidulin enters circulation in its intact form. At a concentration of 30 microm, the flavone crossed the monolayer without degradation as verified by the absence of glucuronidated metabolites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.