Abstract
GABA(A) receptors composed of alpha(1), beta(2), gamma(1) subunits are expressed in only a few areas of the brain and thus represent interesting drug targets. The pharmacological properties of this receptor subtype, however, are largely unknown. In the present study, we expressed alpha(1)beta(2)gamma(1)-GABA(A) receptors in Xenopus laevis oocytes and analyzed their modulation by 21 ligands from 12 structural classes making use of the two-microelectrode voltage-clamp method and a fast perfusion system. Modulation of GABA-induced chloride currents (I(GABA)) was studied at GABA concentrations eliciting 5 to 10% of the maximal response. Triazolam, clotiazepam, midazolam, 2-(4-methoxyphenyl)-2,3,5,6,7,8,9,10-octahydro-cyclohepta-(b)pyrazolo[4,3-d]pyridin-3-one (CGS 20625), 2-(4-chlorophenyl)-pyrazolo[4,3-c]quinolin-3-one (CGS 9896), diazepam, zolpidem, and bretazenil at 1 microM concentrations were able to significantly (>20%) enhance I(GABA) in alpha(1)beta(2)gamma(1) receptors. Methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate, 3-methyl-6-[3-trifluoromethyl-phenyl]-1,2,4-triazolo[4,3-b]pyridazine (Cl 218,872), clobazam, flumazenil, 5-(6-ethyl-7-methoxy-5-methylimidazo[1,2-a]pyrimidin-2-yl)-3-methyl-[1,2,4]-oxadiazole (Ru 33203), 2-phenyl-4-(3-ethyl-piperidinyl)-quinoline (PK 9084), flurazepam, ethyl-7-methoxy-11,12,13,13a-tetrahydro-9-oxo-9H-imidazo[1,5-a]pyrrolo[2,1-c] [1,4]benzodiazepine-1-carboxylate (l-655,708), 2-(6-ethyl-7-methoxy-5-methylimidazo[1,2-a]pyrimidin-2-yl)-4-methyl-thiazole (Ru 33356), and 6-ethyl-7-methoxy-5-methylimidazo[1,2-a]pyrimidin-2-yl)phenylmethanone (Ru 32698) (1 microM each) had no significant effect, and flunitrazepam and 2-phenyl-4-(4-ethyl-piperidinyl)-quinoline (PK 8165) inhibited I(GABA). The most potent compounds triazolam, clotiazepam, midazolam, and CGS 20625 were investigated in more detail on alpha(1)beta(2)gamma(1) and alpha(1)beta(2)gamma(2S) receptors. The potency and efficiency of these compounds for modulating I(GABA) was smaller for alpha(1)beta(2)gamma(1) than for alpha(1)beta(2)gamma(2S) receptors, and their effects on alpha(1)beta(2)gamma(1) could not be blocked by flumazenil. CGS 20625 displayed the highest efficiency by enhancing at 100 microM I(GABA) (alpha(1)beta(2)gamma(2)) by 775 +/- 17% versus 526 +/- 14% I(GABA) (alpha(1)beta(2)gamma(1)) and 157 +/- 17% I(GABA) (alpha(1)beta(2)) (p < 0.05). These data provide new insight into the pharmacological properties of GABA(A) receptors containing gamma(1) subunits and may aid in the design of specific ligands for this receptor subtype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.