Abstract
Abstract Galaxy clusters are important probes for both cosmology and galaxy formation physics. We test the cosmological, hydrodynamical FLAMINGO simulations by comparing to observations of the gaseous properties of clusters measured from X-ray observations. FLAMINGO contains unprecedented numbers of massive galaxy groups (>106) and clusters (>105) and includes variations in both cosmology and galaxy formation physics. We predict the evolution of cluster scaling relations as well as radial profiles of the temperature, density, pressure, entropy, and metallicity for different masses and redshifts. We show that the differences between volume-, and X-ray-weighting of particles in the simulations, and between cool-core non cool-core samples, are similar in size as the differences between simulations for which the stellar and AGN feedback has been calibrated to produce significantly different gas fractions. Compared to thermally-driven AGN feedback, kinetic jet feedback calibrated to produce the same gas fraction at R500c yields a hotter core with higher entropies and lower densities, which translates into a smaller fraction of cool-core clusters. Stronger feedback, calibrated to produce lower gas fractions and hence lower gas densities, results in higher temperatures, entropies, and metallicities, but lower pressures. The scaling relations and thermodynamic profiles show almost no evolution with respect to self-similar expectations, except for the metallicity decreasing with redshift. We find that the temperature, density, pressure, and entropy profiles of clusters in the fiducial FLAMINGO simulation are in excellent agreement with observations, while the metallicities in the core are too high.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have