Abstract

A discrepancy remains in the first two leading empirical orthogonal function (EOF) modes of the tropical Pacific sea surface temperature anomaly (SSTA) based on observations since the 1980s. The EOF1 mode, representing the El Nino-Southern Oscillation (ENSO), is a robust result. However, the EOF2 features either El Nino Modoki (EM) or ENSO evolution during different periods, which is probably associated with the impacts of global warming. The underlying question is what the EOF2 mode of the tropical Pacific would be without global warming. Using the CMIP5 preindustrial scenario to exclude the influence of global warming, we find that the EOF1 mode of the tropical Pacific SSTA represents ENSO and that the EOF2 mode is not EM. According to the lead–lag correlation between the ENSO and EOF2 modes, the linkage between these two modes is as follows: …El Nino → EOF2 → La Nina → –EOF2 → El Nino…. By analyzing the evolution of sea surface temperature, surface wind, and subsurface ocean temperature anomalies, we find the mechanism linking the ENSO and EOF2 modes is the air–sea interaction associated with the ENSO cycle. This result suggests that the EOF2 mode represents an aspect of ENSO evolution under preindustrial conditions. Therefore, this study further indicates that the EM is probably due to the influence of global warming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.