Abstract

The propagation of optical soliton profiles in plasma physics and atomic structures is represented by the (1+1)− dimensional Schrödinger dynamical equation, which is the subject of this study. New solitary wave profiles are discovered by using Nucci’s scheme and a new extended direct algebraic method. The new extended direct algebraic approach provides an easy and general mechanism for covering 37 solitonic wave solutions, which roughly corresponds to all soliton families, and Nucci’s direct reduction method is used to develop the first integral and the exact solution of partial differential equations. Thus, there are several new solitonic wave patterns that are obtained, including a plane solution, mixed hyperbolic solution, periodic and mixed periodic solutions, a mixed trigonometric solution, a trigonometric solution, a shock solution, a mixed shock singular solution, a mixed singular solution, a complex solitary shock solution, a singular solution, and shock wave solutions. The first integral of the considered model and the exact solution are obtained by utilizing Nucci’s scheme. We present 2-D, 3-D, and contour graphics of the results obtained to illustrate the pulse propagation characteristics while taking suitable values for the parameters involved, and we observed the influence of parameters on solitary waves. It is noticed that the wave number α and the soliton speed μ are responsible for controlling the amplitude and periodicity of the propagating wave solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call