Abstract
Stag beetles (Coleoptera: Lucanidae) represent a significant saproxylic assemblage in forest ecosystems and are noted for their enlarged mandibles and male polymorphism. Despite their relevance as ideal models for the study of exaggerated mandibles that aid in attracting mates, the regulatory mechanisms associated with these traits remain understudied, and restricted by the lack of high-quality reference genomes for stag beetles. To address this limitation, we successfully assembled the first chromosome-level genome of a representative species Dorcus hopei. The genome was 496.58 Mb in length, with a scaffold N50 size of 54.61 Mb, BUSCO values of 99.8%, and 96.8% of scaffolds anchored to nine pairs of chromosomes. We identified 285.27 Mb (57.45%) of repeat sequences and annotated 11,231 protein-coding genes. This genome will be a valuable resource for further understanding the evolution and ecology of stag beetles, and provides a basis for studying the mechanisms of exaggerated mandibles through comparative analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.